Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of <i>Lpar1-EGFP</i> SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons, and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels; a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then - during the later time window, acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that <i>Lpar1-EGFP</i> SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.
neuroscience
,mouse